- 0
- 5
- 10
- 15
- 20

Solution :

**Choice 3 is the answer.**

This is a very basic question. The usual method of dealing with absolute values in integrals is to split it into a sum of two integrals and remove the absolute values. Since $|x+1|$ is negative on $[-3, 1)$ and positive on $[-1, 3]\,\,\,$ , we can split the integral into: \[\int_{-3}^3{|x+1|\,dx}=-\int_{-3}^{-1}{(x+1)\,dx}+\int_{-1}^3{(x+1)\,dx}=10.\] Another way of doing this problem is to imagine the graph of $|x+1|$ and realize that the integral is the sum of two 45-45-90 triangles (one with base 2 and height 2, the other with base 4 and height 4). Simply add the area of triangles up and we're done.

**Bonus question:**Given that $c$ is a constant, what is \[\int_{-\infty}^{\infty}{e^{-|x+c|}\,dx}?\]

## 0 comments:

## Post a Comment

This webpage is LaTeX enabled. To type in-line formulae, type your stuff between two '$'. To type centred formulae, type '\[' at the beginning of your formula and '\]' at the end.

Post a Comment